Modulatory effects of carbon monoxide on baroreflex activation in nucleus tractus solitarii of rats.
نویسندگان
چکیده
Recent studies suggest that carbon monoxide (CO), which is produced in significant quantities in many brain regions, may function as a neurotransmitter. Heme oxygenase catalyzes the metabolism of heme to CO and biliverdin; however, the physiological role of CO in central cardiovascular regulation was not well understood. In the present study, we evaluated the baroreflex response of CO in the nucleus tractus solitarii (NTS) of rats. Male Sprague-Dawley rats were anesthetized with urethane, and blood pressure and heart rate were monitored intra-arterially. Unilateral microinjection (60 nL) of hematin, a heme molecule cleaved by heme oxygenase to yield CO, into the NTS produced prominent dose-related depressor and bradycardic effects. Baroreflex responses were elicited by increasing doses of phenylephrine (10 to 30 microg/kg IV) before and after intra-NTS administration of zinc deuteroporphyrin 2,4-bis-glycol (ZnDPBG) (1 nmol), an inhibitor of heme oxygenase activity, or vehicle alone. The reflex bradycardia elicited by phenylephrine was significantly inhibited by pretreatment with ZnDPBG. Furthermore, the inhibitory effect of ZnDPBG on baroreflex activation was dose dependent. These results suggest CO formed by brain heme oxygenase plays a significant role in central cardiovascular regulation and that inhibition of heme oxygenase attenuated baroreflex activation.
منابع مشابه
Interaction of carbon monoxide and adenosine in the nucleus tractus solitarii of rats.
Carbon monoxide has been identified as an endogenous biological messenger in the brain. Heme oxygenase catalyzes the metabolism of heme to carbon monoxide and biliverdin. Previously, we have shown the involvement of carbon monoxide in central cardiovascular regulation, baroreflex modulation, and glutamatergic neurotransmission in the nucleus tractus solitarii of rats. We also showed that adenos...
متن کاملInteractions of carbon monoxide and metabotropic glutamate receptor groups in the nucleus tractus solitarii of rats.
Carbon monoxide has been shown to act as a neurotransmitter and neuronal messenger in the brain. Heme oxygenase catalyzes the conversion of heme to carbon monoxide and biliverdin. We have recently reported that carbon monoxide was involved in central cardiovascular regulation. Carbon monoxide modulated the baroreflex and may affect glutamatergic neurotransmission. In addition, metabotropic glut...
متن کاملThe Effect of Nucleus Tractus Solitarius Nitric Oxidergic Neurons on Blood Pressure in Diabetic Rats
It has been shown that nitric oxide is synthesized in the central nervous system as well as in vascular endothelial cells. Recently, it was reported that nitric oxide was involved in central cardiovascular regulation, baroreflex modulation, and involved in a reciprocal release with excitatory amino acids in the nucleus tractus solitarii of rats. The purpose of the present study was to investiga...
متن کاملInhibition of baroreflex by angiotensin II via Fos expression in nucleus tractus solitarii of the rat.
We evaluated the modulatory action of angiotensin II at the nucleus tractus solitarii on spontaneous baroreceptor reflex response, the angiotensin subtype receptors involved, and the role of Fos protein in this process, using Sprague-Dawley rats anesthetized with pentobarbital sodium. Microinjection bilaterally of angiotensin (Ang ) II (5, 10, 20, or 40 pmol) into the nucleus tractus solitarii ...
متن کاملBaroreceptor reflex modulation by circulating angiotensin II is mediated by AT1 receptors in the nucleus tractus solitarii
Circulating angiotensin II (ANG II) modulates the baroreceptor reflex control of heart rate, at least partly via activation of ANG II type 1 (AT1) receptors on neurons in the area postrema. In this study we tested the hypothesis that the effects of circulating ANG II on the baroreflex also depend on AT1 receptors within the nucleus tractus solitarii (NTS). In confirmation of previous studies in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 35 6 شماره
صفحات -
تاریخ انتشار 2000